Memo

Date:	January 20, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Investigation Activities 109-125 Marbledale Road Tuckahoe, New York January 19, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Thursday January 19, 2017 site work. Site work on this day included site preparation work including installation of silt fencing.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along the east side of Marbledale Road across from the quarry area. The NYSDEC subcontractor is conducting CAMP monitoring (VOCs and Dust) for this work when they are conducting intrusive activities. NYSDEC's subcontractor was installing monitoring wells along the east side of Marbledale Road on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES is conducting CAMP monitoring during the site preparation activities in preparation for the start of the remediation activities. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Thursday 19, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.

HDR staff was on-site on Thursday, January 19, 2017 to observe site preparation and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 01/19/2017 CAMP monitoring event.

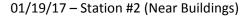
	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.05
Max. 15-min. Ave.	0.01	0.19	0.18	0.13	0.47
Overall Ave.	0.00	0.06	0.09	0.06	0.23
Dust (mg/m³)					
Min. 15-min. Ave.	0.0012	0.0000	0.0070	0.0055	0.0015
Max. 15-min. Ave.	0.0480	0.0499	0.0522	0.0550	0.0513
Overall Ave.	0.0102	0.0094	0.0152	0.0168	0.0113

Date: 01/19/17

Environet CAMP Data Summary Graphs

	Enviro net
iboard Monitor Alerts Map Files Notes Forum Tutorials	Dashboard Monitor Alexts Map Files Notes Forum Tutorials
0A241967 [Station #3 FA02392]	TB00864127 [Station #1 FA00609]
Range t Day • sistem	Date Range Last Day • sustem
sch Table	Graph Table
TG0A241967	TB00864127 January 19, 2017 00:00 to January 19, 2017 22:17 (GMT-5)
0.05 0.01	0.05 0.25
0.04	0.04 02
0.03	0.03 0.15
0.02	0.02
0.01 0.002	0.01
-0.01 08:00 10:00 12:00 14:00 16:00 ^{0:002} → Mass Conc. Total (Avg15) (mg/m ³) → VOC (Avg15) (ppm)	00/08/00 10:00 12:00 14:00 16:00 065 → Mass Conc. Total (Avg1 5) (mg/m³) → VOC (Avg1 5) (ppm)
line chart 🖲 histogram 🔘	line chart ® histogram
Image: state state Minimum Average Moximum UST # > Mass Conc. Total (Avg15), mg/m³ 0.0012, mg/m³ 0.01017, mg/m³ 0.048, mg/m³	Parameters Minimum Average Maximu DUST # > Mass Conc. Total (Avg15), mg/m ² 0.0, mg/m ² 0.0
	VOC #1 > VOC (Avg15), ppm v 0.06174, ppm 0.1913, pp
0C #3 > VOC (Avg15), ppm 0.0003, ppm 0.0003, ppm 0.0078, ppm	

Last Day


custom

Date Range • sustam Last Day Graph Table TB00422233 January 19, 2017 00:00 to January 19, 2017 22:26 (GMT-5) 0.15 0.05 0.125 0.05 0.04 0.02 0.025 0.01 16:00-0.025 12.00 14.00 08:00 10.00 - Mass Conc. Total (Avg15) (mg/m²) - VOC (Avg15) (ppm) line chart 🖲 histogram 💿 Average Parameters Minimum Maximum DUST #... > Mass Conc. Total (Avg15), mg/m2 0.01682, mg/m* 0.055, mg/m* 0.0055, mg/m* VOC #2 > VOC (Avg15), ppm 0.0, ppm 0.05776, ppm 0.1297, ppm ۲ <none

ashboard	Monitor	Alerts	Мар	Files	Notes	Forum	Tutorials	i.
TB00452	777 (st	ation #51	FADD600	ol				
Date Range		actorray	100000	-1				
	• custom							
Graph Tabl								
Tabl	le				Vectors			
	Ja	nuary 19, 2		BO045	2777 ary 19, 2017	22:34 (C	MT-5)	E t
0.7								0.06
0.6	Λ							0.05
0.5	1							0.04
								1
0.4	/							A 0.03
	1	1					AAC	0.02
0.3				N	man	mo	VV	V
	Λ	-		Sec.				0.04
0.3	h	>		Z	~	_	~	n 0.01
	L	>		The second secon	~~		~	C 0.01
0.2	A	>		12:00	~~	14:00		r.
0.2		10:00 VOC (Avg1		12:00 - Mass	Conc. Total	14:00 (Avg15) (16:00 mg/m³)	r.
0.2							mg/m³)	-0.01
0.2						(Avg15) (mg/m³)	0 -0.01
02	Ē	VOC (Avg1			Conc. Total	(Avg15) (line chart	€ histogram ¹ Maximu
0.2	C (Avg15), p	VOC (Avg1	5) (ppm)	— Mass	Conc. Total Minim 0.053, t	(Avg15) (num spm 0	mg/m ¹) Line chart Average	0 -001 histogram Maximu 0.4719, pp

01/19/17 – Station #5 (Morgan Street)

Memo

Date:	January 23, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Investigation Activities 109-125 Marbledale Road Tuckahoe, New York January 20, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Friday January 20, 2017 site work. Site work on this day included site preparation work including installation of silt fencing.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along the east side of Marbledale Road across from the quarry area. The NYSDEC subcontractor is conducting CAMP monitoring (VOCs and Dust) for this work when they are conducting intrusive activities. NYSDEC's subcontractor completed their well installation activities on Thursday and were demobilizing the drilling equipment on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES is conducting CAMP monitoring during the site preparation activities in preparation for the start of the remediation activities. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Friday 20, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.

NYSDEC staff was on-site for a short time on Friday, January 20, 2017 to observe the drilling equipment demobilization activities for their drilling subcontractor. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 01/20/2017 CAMP monitoring event.

Date. 01/20/17					
	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.05
Max. 15-min. Ave.	0.04	0.10	0.16	0.10	0.26
Overall Ave.	0.00	0.06	0.09	0.05	0.21
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0063	0.0095	0.0090	0.0000	0.0071
Max. 15-min. Ave.	0.0267	0.0222	0.0244	0.0269	0.0210
Overall Ave.	0.0131	0.0148	0.0174	0.0190	0.0142

Date: 01/20/17

Environet CAMP Data Summary Graphs

01/20/17 – Station #2 (Near Buildings)

envir	1	net /					HydroEnvir	onmental Solut
ashboard	Monitor	Alerts	Мар	Files	Notes	Forum	Tutorials	
TB0045	2777 [Sta	ation #5	FA00600	01				
ate Range				-1				
Last Day	• custom							
Graph Ta	ble							
				r80045	2777			
0.3	Jai	nuary 20, 2			ury 20, 2017	16:22 (GMT-S)	0 035
0.25		75	D	Λ	m		m	0.03
0.2 -		~~~						0.025
0.15	S					~		0.02
9.14	N				5	4.4	ma	~
0.1		~	han		1			0.015
0.05	N			N	~			0.01
4	/							
0	08:00		10:00	- Mass	12:00 Conc. Total			16:00 0.005
								histogram
Parameters					Mini	mum	Average	Maximu
VOC #5 > V	OC (Avg15), p	pm			0.053	ppm	0.20928, ppm	0.258, pp
			and and		0.0071. #	Index	0.01421, mg/m*	0.021, mg/m
DUST # >	Mass Conc. T	otal (Avg15	P materials		0.0011,1	Photos .	A State of the sta	0.021, mg/m

01/19/17 – Station #5 (Morgan Street)

FSS

Memo

Date:	January 24, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Investigation Activities 109-125 Marbledale Road Tuckahoe, New York January 23, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Monday January 23, 2017 site work. The site contractor conducted site preparation work on this day including installation of silt fencing and installation of a gravel truck entrance at the southern entrance to the site.

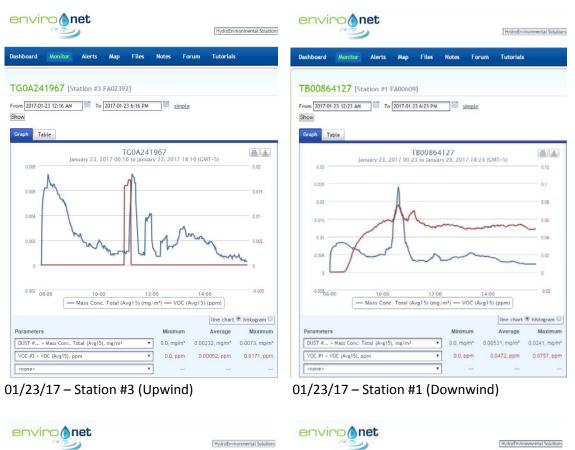
It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along the east side of Marbledale Road across from the quarry area. The NYSDEC subcontractor is conducting CAMP monitoring (VOCs and Dust) for this work when they are conducting intrusive activities. NYSDEC's subcontractor was not conducting any work in the area on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES is conducting CAMP monitoring during the site preparation activities in preparation for the start of the remediation activities. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Monday 23, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.


HDR staff was on-site on Monday, January 23, 2017 to observe the site preparation activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 01/23/2017 CAMP monitoring event.

Dute: 01/20/1/	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.06
Max. 15-min. Ave.	0.02	0.07	0.13	0.06	0.22
Overall Ave.	0.00	0.05	0.09	0.04	0.19
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0000	0.0000	0.0050	0.0039	0.0021
Max. 15-min. Ave.	0.0073	0.0241	0.0403	0.0286	0.0044
Overall Ave.	0.0023	0.0053	0.0088	0.0082	0.0090

Date: 01/23/17

Environet CAMP Data Summary Graphs

Marbledale Road BCP Site Summary of CAMP Results (01/23/17) January 24, 2017

enviro	ne	et					BydroEnvi	ronmental Soluti
Ashboard Mc	mitor	Alerts	Мар	Files	Notes	Foru	n Tutorials	
TB0045277	7 [Stati	ion #5 F	A00600)]				
rom 2017-01-23 12 Show	535 AM] 🖩 То [2017-01-2	23 6:35 PM	<u> </u>	imple		
Graph Table								
03	Janua	ary 23, 20		BOO45 5 to Janu	2777 ary 23, 201	7 18:35	(GMT-5)	0.01
								0.01
0.25 LA	1							0.008
0.2	1	-	~	-				0.006
0.15	Ju .	1		ſ	hr	~	5 1	0.004
1		~		n	5		mil	1
01								0.002
0.05 05:0	0	10:0	0	12	00	14	:00	16:00
	- vc	C (Avg1)	5) (ppm)	- Mass	Conc. Tota	I (Avg15) (mg/m ¹)	
							line chart	🖲 histogram 🤅
Parameters					Min	imum	Average	Maximur
VOC #5 > VOC (A	/g15), ppm			7	0.061	, ppm	0.10929, ppm	0.2229, pp
	Come Tak	A DAY OF ALL A	me/ml	×	0.0024	and the second second	0.00439, mg/m*	
DUST # > Mass	conc. rou	ar (pwg13),	t infrare.	· · · ·	0.0023	ngan.	u.uuvvae, ingini	0.009, mg/m

01/23/17 – Station #5 (Morgan Street)

Memo

Date:	January 27, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Preparation Activities 109-125 Marbledale Road Tuckahoe, New York January 26, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Thursday January 26, 2017 site work. The site contractor continued with site preparation work on this day including stump and brush removal activities.

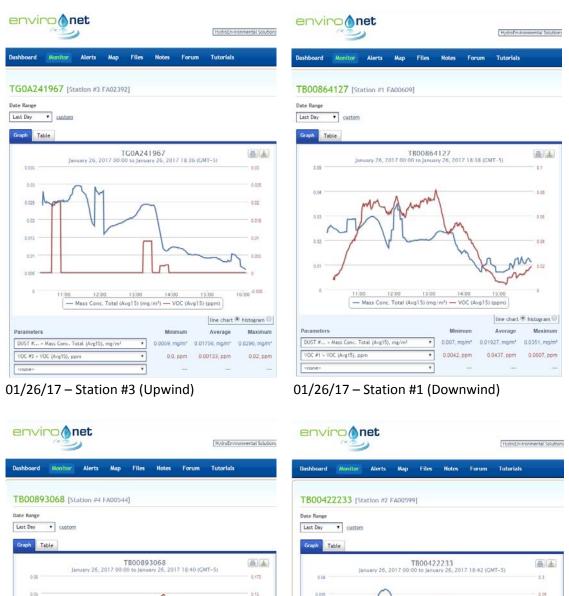
It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. The NYSDEC subcontractor conducts CAMP monitoring (VOCs and Dust) they are conducting intrusive activities. NYSDEC's subcontractor was not conducting any work in the area on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES is conducting CAMP monitoring during the site preparation tasks in preparation for the start of the remediation activities. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Thursday 26, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.


During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 01/26/2017 CAMP monitoring event.

Date: 01/20/17					
	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.01	0.00	0.00
Max. 15-min. Ave.	0.02	0.08	0.15	0.14	0.08
Overall Ave.	0.00	0.04	0.07	0.05	0.02
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0056	0.0070	0.0000	0.0105	0.0041
Max. 15-min. Ave.	0.0296	0.0351	0.0360	0.0522	0.0309
Overall Ave.	0.0176	0.0193	0.0226	0.0265	0.0165

Date: 01/26/17

Environet CAMP Data Summary Graphs

01/26/17 – Station #2 (Near Buildings)

7 - 0.05

h

line chart ® histogram @

15:00

0.0105, mg/m* 0.02649, mg/m* 0.0363, mg/m

Average

0.05222, ppm

Minimum

0.0, ppm

16:00 -0.05

Maximum

0.1405, ppm

Marbledale Road BCP Site Summary of CAMP Results (01/26/17) January 27, 2017

	net 🤌				HydroEnv	ironmental Solutio
shboard Monitor	Alerts M	lap Files	Notes	Forum	Tutorials	
B00452777 (s	tation #5 FA0	0600]				
ate Range Last Day • custor	n					
Graph Table						242
0.12 J	anuary 26, 2017		52777 Juary 26, 2017	18:44 (G	MT-5)	0.035
0.1	\wedge					0.03
0.08		1	2			0.025
0.05			mly	Ч		0.02
0.04		,	h h	P		0.015
0.02		~~/		~	S	0.005
-0.02 10:00	11:00 - VOC (Avg15) (j		3.00 14.0 ss Conc. Total		16. ng/m²)	0 0
					line chart	🖲 histogram 🤅
Parameters			Minir	num	Average	Maximum
VOC #5 > VOC (Avg15),	ppm	-	• 0.0,	ppm 0	01663, ppm	0.0771, ppn
DUST # > Mass Conc.	Total (Avg15), mg	g/m ¹	• 0.0041, m	g/m* 0.0	165, mg/m*	0.0309, mg/m
<none></none>						

01/26/17 – Station #5 (Morgan Street)

Memo

Date:	January 31, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York January 30, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Monday January 30, 2017 site work. The environmental consultant advanced direct push borings to collect additional soil samples. The soil samples were submitted for analysis required for proper off-site disposal. There were no site preparation activities at the site on this day.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. The NYSDEC subcontractor conducts CAMP monitoring (VOCs and Dust) when they are conducting intrusive activities. NYSDEC's subcontractor was not conducting any work in the area on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during shallow soil boring activities on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

It should be noted that one of the downwind stations (#1) had a battery malfunction on this day and was not able to collect data. Corrective action was pursued with the equipment rental company and this station will be available for subsequent monitoring events. The other downwind station (Sta. #4) was placed immediately downwind of the soil boring activities.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Monday 30, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.

During this monitoring event there were no exceedances of the CAMP alert triggers at any of the four operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 01/30/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1) *	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	-	0.00	0.00	0.00
Max. 15-min. Ave.	0.00	-	0.07	0.12	0.06
Overall Ave.	0.00	-	0.05	0.08	0.04
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0000	-	0.0059	0.0000	0.0045
Max. 15-min. Ave.	0.0065	-	0.0107	0.0115	0.0095
Overall Ave.	0.0045	-	0.0071	0.0091	0.0058

Date: 01/30/17

* Station #1 was not operational for this CAMP monitoring event.

Environet CAMP Data Summary Graphs

onet					HydroEnv	ironmental Soluti
itor Alerts	Мар	Files	Notes	Forum	Tutorials	
7 IStation #3	FA0239	21				
		-1				
ustom						
8 105					222	A I
January 30, i	2017 00:0	0 to Janua	ury 30, 2017	18:05 (GM	IT-5)	0.0004
\sim					_	0.0003
V	~J	m	. /	1		0.0000
		(-		MA	0.0002
				V 7	N. Y	0.0001
						D
						0
						-0.0001
					line chart	🖲 histogram 🤅
			Minimu	m	Average	Maximun
			1			Contract of the second s
onc. Total (Avg15 g15), ppm	i), mg/m³		_		62, mg/m³ e-05, ppm	0.0065, mg/m
	7 [Station #3 January 30, 1	Iter Aterts Map 7 [Station #3 FA0239 satem January 30, 2017 00:0 10:00 11:00	Itor Aterts Map Files 7 [Station #3 FA02392] statom TCOA24 January 30, 2017 00:00 to Januar 0.017 00:00 to Januar 10:00 11:00	Iter Alerts Map Files Notes 7 [Station #3 FA02392] ustem TCG0A241967 January 30, 2017 00:00 to January 30, 2017 00:00 to January 30, 2017	Item Alerts Map Files Notes Forrum 7 [Station #3 FA02392] ustem TCOA241967 January 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Manuary 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Manuary 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Manuary 30, 2017 10:05 (GM Optimizer (Colspan="2">Manuary 30, 2017 10:05 (GM Manuary 30, 2017 10:05 (Mag (Mag (Mag (Mag (Mag (Mag (Mag (Mag	Tree Alerts Map Files Notes Forum Totorials 7 [Station #3 FA02392] ustem TCG0A241967 January 30, 2017 00:00 to January 30, 2017 18:05 (GMT-5) 7

01/30/17 – Station #3 (Upwind)

Monitoring Station #1 was not operational for this event. 01/30/17 – Station #1 (Downwind)

HydroEnvironmental Solutions	
ashboard <u>Monitor</u> Alerts Map Files Notes Forum Tutorials	Dashboard Monitor Alerts Map Files Notes Forum Tutorials
B00893068 [Station #4 FA00544]	TB00422233 [Station #2 FA00599]
ate Range Last Day • custom	Date Range Last Day
Graph Table	Graph Table
TB00893068 (EMT-5)	T800422233 January 30, 2017 00:00 to January 30, 2017 16:10 (GMT-5) 8:05
0.00	0.0125
0.009 0.009	0.01 0.075
0.000 0.04	0.000 0.000
Man har har har har	0.0025
0.005 10,00 11,00 12,00 13,00 14,00 4,00	-0.025 10.00 11.00 12.00 13.00 14.00 -0.025
- Mass Conc. Total (Avg15) (mg/m³) - VOC (Avg15) (ppm)	- Mass Conc. Total (Avg15) (mg/m²) - VOC (Avg15) (ppm)
Parameters Minimum Average Maximum	Ine chart ® histogram G Parameters Minimum Average Maximum
DUST # > Mass. Conc Total (Avg15), mg/m ³ V 0.0059, mg/m ³ 0.00707, mg/m ³ 0.0107, mg/m ³	DUST # > Mass Conc. Total (Avg15), mg/m ³ • 0.0, mg/m ³ 0.00912, mg/m ³ 0.0115, mg/m
VOC //4 > VOC (Avg15), ppm • 0.05234, ppm 0.0675, ppm	VOC #2 > VOC (Avg15), ppm
(bane) T	(note) T

01/30/17 – Station #4 (Downwind)

01/30/17 – Station #2 (Near Buildings)

envir		et					HydroEnv	ironmental Solution
Dashboard	Monitor	Alerts	Мар	Files	Notes	Forum	Tutorials	
TR00 45 2	777							
TB00452	/// [Sta	ation #5 F	A0060	0]				
Date Range Last Day	▼ custom							
Graph Tab	le							
	1			TB0045	2777 ary 30, 2017	10.15 //	MT E	
0.1	Jar	iuary 50, 21	017 00:0	o to janu	ary 50, 2017	18:15 (G	MT-3)	0.01
0.08								0.009
								0.005
0.06 —	4			\sim			um.	0.008
0.04	1	./						0.007
	4.0	X,			-1			
0.02	-00	1	Any		1.1			0.006
0 -					~~u/	ha	m AF	0.005
						V	r -V- 0	
-0.02 05			11:00	12:00				00 0.004
	_	VOC (Avg1	5) (ppm)	- Mass	Conc. Total (Avg15) (mg/m²)	
							line chart	🖲 histogram 🔘
Parameters					Minimu		Average	Maximum
	C (Avg15), p			*	0.0, pj		0.042, ppm	0.0593, ppm
	Mass Conc. T	otal (Avg15)	, mg/m³	*	0.0045, mg/	m² 0.0	usı /, mg/m²	0.0095, mg/m ³
<none></none>				٣			_	

01/30/17 – Station #5 (Morgan Street)

Memo

Date:	February 01, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York January 31, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Tuesday January 31, 2017 site work. The environmental consultant advanced direct push borings to collect additional soil samples. There were some site preparation activities at the site which included relocation of brush piles and installation of protection fencing around monitoring wells on this day.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. The NYSDEC subcontractor conducts CAMP monitoring (VOCs and Dust) when they are conducting intrusive activities. NYSDEC's subcontractor was not conducting any work in the area on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during shallow soil boring activities on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Tuesday January 31, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.

HDR staff was on-site on Tuesday, January 31, 2016 to observe drilling and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities that were caused by the site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

It should be noted that the Dust concentration at Station # 2 was elevated for the first reading at 0905. This was caused by the meter startup procedures, not site activities. HES began soil boring activities at approximately 1000.

Date: 01/31/17					
CAMP Data	Upwind (Sta. 3)	Downwind (Sta. 1)	Downwind (Sta. 4)	Buildings (Sta. 2)	Morgan Str. (Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.00	0.12	0.13	0.03	0.14
Overall Ave.	0.00	0.08	0.08	0.01	0.10
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0090	0.0000	0.0130	0.0107	0.0090
Max. 15-min. Ave.	0.0179	0.0440	0.0293	0.5820	0.0235
Overall Ave.	0.0157	0.0192	0.0195	0.0269	0.0178

Below is a summary table for the 01/31/2017 CAMP monitoring event.

Environet CAMP Data Summary Graphs

01/31/17 - Station #4 (Downwind)

TB00422233 [Station #2 FA00599]

Date Range • custom Last Day

01/31/17 - Station #2 (Near Buildings)

envir		et /					HydroEnv	ironmental Soluti
ashboard	Monitor	Alerts	Мар	Files	Notes	Forum	Tutorials	
FR0045	2777 [st	ation #5.1		1				
ate Range	2111 [30		100000	41				
Last Day	• custom							
Graph Ta	ble							
CONTRACTOR OF				TB0045	2777			(A)
6.2 -	Jar	nuary 31, 2			2777 ary 31, 2017	19:42 (G	M(T=5)	103
								0.00
0.15								0.025
		4		_	A			
0.1		L	AA	-	12	~	~	× 0.02
0.05 -		2	v	×				0.015
	1	-						0.010
0 -	4							0.01
-0.05	100010				13:00 Conc. Total (14:00 Avg15) (r	15:00 ng/m ⁴)	0.005
							line chart	🖲 histogram (
Parameters					Minima	m	Average	Maximur
	OC (Avg15), p			۷	0.0, p;	m D.	10075, ppm	0.1433, pp
DUST # >	Mass Conc. T	otal (Avg15)	. mg/m ³		0.009, mg/	m* 0.01	781, mg/m*	0.0235, mg/m

01/31/17 – Station #5 (Morgan Street)

Memo

Date:	February 02, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 01, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Wednesday February 01, 2017 site work. The environmental consultant advanced direct push borings to collect additional soil samples. Site preparation activities at the site included removal of brush piles on this day.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. The NYSDEC subcontractor conducts CAMP monitoring (VOCs and Dust) when they are conducting intrusive activities. NYSDEC's subcontractor was conducting off-site soil vapor investigation work on this day. CAMP data collected by NYSDEC's subcontractor is not included in these summaries.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during shallow soil boring activities on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Wednesday February 01, 2017, neither water nor foam were required. There were no visible dusts or noticeable odors released from the work activities for this event.

Marbledale Road BCP Site Summary of CAMP Results (02/01/17) February 02, 2017

During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities that were caused by the site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 02/01/2017 CAMP monitoring event.

Date. 02/01/17					
	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.01	0.00	0.00	0.00
Max. 15-min. Ave.	0.00	0.17	0.20	0.02	0.05
Overall Ave.	0.00	0.13	0.09	0.07	0.09
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0010	0.0072	0.0144	0.0000	0.0065
Max. 15-min. Ave.	0.0221	0.0320	0.0420	0.0237	0.0207
Overall Ave.	0.0121	0.0151	0.0214	0.0190	0.0128

Date: 02/01/17

Environet CAMP Data Summary Graphs

Show

11:500.05

Maximum

line chart 🖲 histogram 🔘

Average

0.0, ppm 0.09079, ppm 0.2001, ppm

0.0144, mg/m* 0.02143, mg/m* 0.042, mg/m*

02/01/17 – Station #4 (Downwind)

10.00

DUST #... > Mass Conc. Total (Avg15), mg/m

VOC #4 > VOC (Avg15), ppm

From 2017-02-01 7:52 AM

TB00893068 ruary 01, 2017 07:52 to February 01, 2017 17:52 (GMT-5)

10.10

- Mass Conc. Total (Avg15) (mg/m³) - VOC (Avg15) (ppm)

Show

Graph Table

0.04

02/01/17 – Station #2 (Near Buildings)

hdrinc.com

11:00

Minimum

		1					HydroEn	wironmental Solut
ashboard	Monitor	Alerts	Мар	Files	Notes	Foru	m Tutorial	s
FB00452			305.0					
rom 2017-02-	01 7:02 AM	To	2017-02-0	01 5:02 PM	5	imple		
Graph Tal	ble							
				TB0045				₩
0.1 -	Feb	ruary 01, 2	017 07.0	2 to Febri	ary 01, 20	17 17:0	2 (GMT-5)	0.03
					0			
0.075				1.	14		r	0.025
				U	~ L	~	- 1	
			_					
0.05			-					0.02
0.05	~	V	-					0.02
	~	X	~					
0.05	~	X	~	1				0.02
0.025		X	h	-1-1	~			0.015
		X	~	-1-	7		~	
0.025 — 0 —		X	~	-1-	~		~	0.015
0.025		10:00	5) (npm)	-1~~	Coor Jan	12:00		0.015
0.025 — 0 —		10:00 VOC (Avg1	5) (ppm)		Conc. Tota			0.015
0.025 — 0 —			5) (ppm)		Conc. Tota		5) (mg/m³)	0.015
0.025		VOC (Avg1	5) (ppm)				5) (mg/m³)	0.015 0.01 5:00 0.005 t 1 histogram
0.025		VOC (Avg1	5) (ppm)		Mini	I (Avg1	5) (mg/m ¹)	0.015 0.01 5:00 0.005 t ® histogram (Maximu
0.025		VOC (Avg1		- Mass	Mini 0.0.	mum	5) (mg/m ¹) Line chart Average	0.015 0.01 5:00 0.005 t ® histogram 0 Maximu 0.0895, pp

02/01/17 – Station #5 (Morgan Street)

Memo

Date:	February 10, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 08, 2016

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Wednesday February 08, 2017 site work. The remediation contractor began excavation activities at the SA-2 area.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. There were no "off-site" work activities by NYSDEC's subcontractor on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-2 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Wednesday February 08, 2017, neither water nor foam were required. There were no visible dusts released from the work activities for this event. HDR and NYSDEC representatives were on site on Wednesday, February 08, 2017 to observe the excavation and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five

operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Today the wind direction at the site shifted several times during the day. HES moved the Upwind and Downwind CAMP stations three times to account for the wind direction shifts after the CAMP stations were initially set up.

Excavation and soil hauling activities began at 0830 and the last truck left the site at 1500 (15 truck loads in total for the day). The initial 5 trucks were loaded between 0830 and 1000, 2 trucks were loaded between 1115 and 1145, and 8 trucks were loaded between 1300 and 1500.

It was noted that there were slight to moderate "landfill" or "decaying debris" odors on occasion at the edge of the excavation when the excavator dug into the deeper material (below about 8 feet). These odors dissipated in the excavation work area when the excavator stopped working.

HDR noted the Downwind CAMP Station # 4 was reading 0.3 ppm at 1215 when the contractor was taking a break, waiting for additional trucks to arrive. The nearby Downwind Station #1 was reading 0.0 ppm. HES moved the Station #1 over to the Downwind Station #4 location, as well as their mobile PID to take side-by-side readings. The mobile and Station #1 PIDs both read 0.0 ppm while the Station #4 unit read 0.3 ppm, indicating the Downwind Station #4 was reading slightly higher background concentrations at that time.

Initially the dust concentrations at all of the stations were up near 0.08 to 0.1 mg/m³. This was likely due to the ground fog and humid air conditions in the morning. The dust readings at all of the stations decreased during the day as the ground fog lifted and the humidity decreased.

Below is a summary table for the 02/08/2017 CAMP monitoring event.

Date: 02/08/17

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.01	0.00	0.00
Max. 15-min. Ave.	0.09	0.17	0.33	0.11	0.28
Overall Ave.	0.00	0.13	0.22	0.04	0.04
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0083	0.0051	0.0133	0.0113	0.0040
Max. 15-min. Ave.	0.0921	0.0851	0.0926	0.1037	0.1027
Overall Ave.	0.0422	0.0403	0.0487	0.0501	0.0402

Environet CAMP Data Summary Graphs

02/08/17 – Station #4 (Downwind)

02/08/17 - Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/08/17) February 10, 2017

enviro@net MydeEmken							nvironmental Solution
Ashboard Monitor	Alerts	Мар	Files	Notes	For	um Tutoria	Ь
FB00452777 [s	tation #5 FA	00600	1				
rom 2017-02-08 7:46 AM	то 2	017-02-0	8 6:46 PM	_ 11 s	imple		
ihow							
Graph Table			B0045	2777	_		
0.5	bruary 08, 201				17 18	46 (GMT-5)	0.125
0.4	~						0.1
03 - (0.075
\sim	(L	/					
0.2		L	1				0.05
a1 1	~	M	1		_		0.025
		-	~		-		0
-01 08:00	10:00 - VOC (Avg15)	form	12:00		4:00	16:00	-0.025
Ļ	Toc (mg1)	(pprin)	- (#1855	conc. rora	a iyav ya		t 🖲 histogram 🗇
Parameters				Minir	num	Average	
VOC #5 > VOC (Avg15),	ppm		۲	0.0,	ppm	0.03504, ppm	0.2772, ppm
DUST # > Mass Conc.	Total (Avg15), r	mg/m ¹	,	0.004, m	g/m*	0.04023, mg/m ³	0.1027, mg/m*
«none»			+				-

02/08/17 - Station #5 (Morgan Street)

Memo

Date:	February 14, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 13, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Monday February 13, 2017 site work. The remediation contractor completed excavation activities at the SA-2 area on this day.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. However, there were no "off-site" work activities by NYSDEC's subcontractor on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-2 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Monday February 13, 2017, neither water nor foam were required. There were no visible dusts released from the work activities for this event. HDR and NYSDEC representatives were on site on Monday, February 13, 2017 to observe the excavation and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating

CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Today the wind direction at the site shifted several times during the day. HES moved the Upwind and Downwind CAMP stations three times to account for the wind direction shifts after the CAMP stations were initially set up.

Excavation and soil hauling activities began at 0830 and the last truck left the site at 1015 (6 truck loads in total for the day). During the remainder of the day, the contractor removed snow from areas where they are planning to conduct work in the future.

Winds were sometimes gusty on this day; however, there were no noticeable dusts leaving the work area as the soils were moist from the recent snowfall. There were no noticeable odors from the excavation area during excavation and truck loading activities on this day.

HDR noted the Downwind CAMP Station #4 was reading 0.3 ppm when the CAMP stations were first started up prior to excavation activities on this day. The nearby Downwind Station #1 was reading 0.0 ppm; in addition, the mobile PID was reading 0.0 ppm when it was placed next to the Station #4. The PID at Station #4 was reading 0.3 ppm during the last monitoring event (02-08-17) as well when there were no excavation activities and the other PIDs were reading 0.0 ppm. HES switched the mobile PID unit with the PID unit that was in CAMP Station #4 and recalibrated the PID that was reading background above 0.0 ppm. As shown on the graph, the PIDs were switched out at about 0930. After recalibration, the PID unit (now the mobile unit) was reading the same as the other PIDs (0.0 ppm) when it was compared with them side-by-side.

As mentioned previously, the wind conditions were rather gusty on this day; however, the dust concentrations at the CAMP stations remained low for the duration of the monitoring event.

Below is a summary table for the 02/13/2017 CAMP monitoring event.

Date: 02/13/17

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.01	0.00	0.00
Max. 15-min. Ave.	0.00	0.00	0.23	0.12	0.19
Overall Ave.	0.00	0.00	0.04	0.08	0.14
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0031	0.0029	0.0091	0.0085	0.0057
Max. 15-min. Ave.	0.0073	0.0211	0.0269	0.0176	0.0120
Overall Ave.	0.0051	0.0069	0.0148	0.0134	0.0081

Map Files Notes

TG0A241967 February 13, 2017 05:26 to February 13, 2017 18:27 (GMT-5)

enviroonet

Alerts

From 2017-02-13 6:26 AM

TG0A241967 [Station #3 FA02392]

Dashboard Monitor

Show

Graph Table

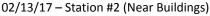

0.008 r 0.007 0.000

enviroonet HydroEnvironmental HydroEnvironmental 1 Map Files Notes Forum Dashboard Monitor Alerts Tutorials TB00864127 [Station #1 FA00609] From 2017-02-13 6:29 AM To 2017-02-13 6:29 PM simple Show Graph Table TB00864127 February 13, 2017 06:29 to February 13, 2017 18:29 (GMT-5) 曲上 · · 8.00 09:00 10:00 11:00 12:00 13:00 - Mass Conc. Total (Avg15) (mg/m³) - VOC (Avg15) (ppm) 14:000.06 line chart . H Maximum Average DUST #... > Mass Conc. Total (Avg15), mg/m 0.0029, mg/m* 0.00693, mg/m* 0.0211, mg/m* 0.0. ppm 0.0. ppm 0.0, ppm

Environet CAMP Data Summary Graphs

Forum

Tutorials


02/13/17 - Station #4 (Downwind)

02/13/17 - Station #1 (Downwind)

HydroEnvironmental Solutions

Tutorials

Marbledale Road BCP Site Summary of CAMP Results (02/13/17) February 14, 2017

	(AR)	2					HydroEnvir	comental Soluti
lashboard	Monitor	Alerts	Мар	Files	Notes	Foru	m Tutorials	i.
FB0045	2 777 [St	ation #5	FA00600	0]				
rom 2017-02	-13 6:42 AM	То	2017-02-	13 6:42 PM	1	imple		
Graph Ta	ble							
				FB0045				(B)(1)
0.2 -	Feb	ruary 13, 2	017 06 4	2 to Febr	uary 13, 20	17 18 4	2 (GMT-5)	0.014
		1	1	~			5	_
0.15		1	1					0.012
۵ı —	1	15	1 /	h				0.01
	1	1		2L	~			
0.05	W				h	-	N	0.008
0 -	V						Lan	0.006
-0.05	00:800	VOC (Avg1	5) (oom)	- Mass	12:00 Conc. Tota	(Avel)	14:00 (mg (m ²)	0.004
			al (hhu)					histogram
Parameters					Min	imum	Average	Maximur
	OC (Avg15), p	pm :		*	0.0), ppm	0.14112, ppm	0.1889, ppr
VOC #5 > V	2 4 4 - 8 - 4D 4							
	Mass Conc. T), mg/m ³	*	0.0057.	mg/mª	0.00807, mg/m*	0.012, mp/m

02/13/17 - Station #5 (Morgan Street)

Memo

Date:	February 15, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 14, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Tuesday February 14, 2017 site work. The remediation contractor conducted site preparation activities including removal and stockpiling of topsoil from a few locations and removal and stockpiling of on-site soils (from non-source area locations) to be used for backfilling the SA-2 excavation.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. However, there were no "off-site" work activities by NYSDEC's subcontractor on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-2 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Tuesday February 14, 2017, neither water nor foam were required. There were no visible dusts released from the work activities for this event. HDR and NYSDEC representatives were on site on Tuesday, February 14, 2017 to observe the topsoil removal and stockpiling activities, backfill soil removal and

stockpiling activities, and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 02/14/2017 CAMP monitoring event.

Date: 02/14/17					
	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.22	0.00	0.00	0.27	0.18
Overall Ave.	0.01	0.00	0.00	0.08	0.14
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0131	0.0179	0.0000	0.0000	0.0146
Max. 15-min. Ave.	0.0309	0.0508	0.0467	0.1173	0.0315
Overall Ave.	0.0210	0.0314	0.0312	0.0371	0.0228

Date: 02/14/17

enviroonet

1

enviroonet shboard Alerts Tutorial TB00864127 [Station #1 FA00609] From 2017-02-14 6:08 AM

Environet CAMP Data Summary Graphs

HydroEnvironmental Solutions

Show

02/14/17 - Station #1 (Downwind)

Dashboard Monitor Alerts Map Files Notes Forum

From 2017-02-14 6:21 AM

HydroEnv

Tutorials

enviroonet

Show

TB00422233 [Station #2 FA00599]

Graph Table TB00422233 February 14, 2017 06:21 to February 14, 2017 18:21 (GMT-5) 0.125 0.00 0.025 10:00 12:00 14:00 Mass Conc. Total (Aug15) (mg/m¹) - VOC (Aug15) (ppm) line chart ® histogram 💿 Average Minim Maxim DUST #... > Mass Conc. Total (Avg15), mg 0.0, mg/m* 0.03708, mg/m* 0.1173, mg/m VOC #2 > VOC (Avg15), ppm 0.0, ppm 0.07866, ppm 0.2719, ppm Inone

02/14/17 - Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/14/17) February 15, 2017

envir		et					HydroEm	ironmental Solutio
shboard	Monitor	Alerts	Мар	Files	Notes	For	um Tutorial:	8
B00452	777 [Sta	ation #5 i	FA0060	0]				
om 2017-02-1	14 6:16 AM	То	2017-02-	14 6:16 PM	1	mple		
iraph Tab	le							
	Feb	ruary 14, 2		FB0045 6 to Febri		7 18	16 (GMT-5)	
02								0.035
0.15		~~	-	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	m	100
0.15		/			1		mon	M
0.1	/			n/m	N	V		V 0.025
	/			1				
0.05	1	đ	21	/				0.02
	10	~~~~	~					
0 40		/						0,015
1222								
-0.05 08:0		10:00		12:00	· · · ·	14:0	0 10 15) (mg/m ⁴)	5:00 0:01
		ADC (MAB)	a) (bhur)	- 19855	Conc. 1000	(seed)	(3) (mg/m-)	
							line chart	histogram
arameters					Minin		Average	Maximum
VOC #5 > VO		The second		*	0.0,		0.13588, ppm	0.1769, ppm
DUST # > 1	Mass Conc. T	initial (duo16)	1 mg/m1		0.0146, m	Same.	0.02277, mg/m*	0.0315, mg/m*
		orise built int	transferra	*	0.0140,10	100 C	and the second second	a a a a a trigent

02/14/17 - Station #5 (Morgan Street)

Memo

Date:	February 16, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 15, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Wednesday February 15, 2017 site work. The remediation contractor began backfilling the SA-2 excavation. In addition, they conducted site preparation activities including removal and stockpiling of topsoil from a few locations and removal and stockpiling of on-site soils (from non-source area locations) to be used for backfilling the SA-2 excavation.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. However, there were no "off-site" work activities by NYSDEC's subcontractor on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-2 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Wednesday February 15, 2017, neither water nor foam were required. There were no visible dusts released from the work activities for this event. An HDR representative was on site on Wednesday, February 15,

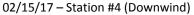
2017 to observe the topsoil removal and stockpiling activities, backfill soil removal and stockpiling activities, SA-2 excavation backfilling activities, and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

Below is a summary table for the 02/15/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.05	0.00	0.00	0.12	0.22
Overall Ave.	0.00	0.00	0.00	0.05	0.13
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0435	0.0000	0.0000	0.0000	0.0153
Max. 15-min. Ave.	0.0778	0.0749	0.0839	0.1017	0.0771
Overall Ave.	0.0613	0.0578	0.0657	0.0731	0.0573

Date: 02/15/17

enviroonet


Show

TG0A241967 [Station #3 FA02392]

enviroonet HydroEnvironmental Solution HydroEnvironmental Solution -Dashboard Monitor Alerts Map Files Notes Forum Tutorials Dashboard Monitor Alerts Map Files Notes Forum Tutorials TB00864127 [Station #1 FA00609] From 2017-02-15 6:30 AM From 2017-02-15 6:33 AM Show Graph Table T800864127 February 15, 2017 06:33 to February 15, 2017 18:33 (GMT-5) 画王 A + 0.05 0.04 0.04 0.02 0.025 16:00 -0.05 .0.01 10:00 12:00 14:00 - Mass Conc. Total (Avg15) (mg/m²) - VOC (Avg15) (ppm) line chart 🖲 histogram 😳 line chart . histogram Parameters Average Maximur Average Maxin DUST #... > Mass Conc. Total (Avg15), mg/m 0.0, mg/m* 0.05781, mg/m* 0.0749, mg/m*

02/15/17 - Station #2 (Near Buildings)

0.0 ppm

高山

0.125

Marbledale Road BCP Site Summary of CAMP Results (02/15/17) February 16, 2017

envir		et					HydroEn	Aronmental Solutio
ishboard	Monitor	Alerts	Мар	Files	Notes	For	um Tutorial:	
B00452	777 [St	ation #5 (-40060	01				
om 2017-02-				15 6:51 PM	5	imple		
how		_						
Giraph Tab	le							
				FB0045	2777			a .
0.25	Feb	ruary 15, 2				17 18	51 (GMT-5)	0.12
					N			
0.2			h					0.1
0.15	-1	~		~	11			0.08
	/			/	5	no	Jm	0.00
0.1	1	~	\sim	\bigcirc			V	0.00
0.05	1							1 0.04
0	/							0.02
-0.05 08		10:00		12:00		14:00	16:00	0
	-	VOC (Avg1	5) (ppm)	- Mass	Conc. Tota	I (Avg	5) (mg/m ²)	
								histogram
Parameters	10.00 m					mum	Average	Maximum
	C (Avg15), p			•		ppm	0.12769, ppm	0.2168, ppm
	Mass Conc. T	otal (Avg15)	, mg/m ¹	*	0.0153, #	ighn,	0.05734, mg/m²	0.0771, mg/m ⁴
<800e>								

02/15/17 - Station #5 (Morgan Street)

Memo

Date:	February 17, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 16, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Thursday February 16, 2017 site work. The remediation contractor continued backfilling the SA-2 excavation. In addition, they conducted site preparation activities including removal and stockpiling of topsoil from a few locations and removal and stockpiling of on-site soils (from non-source area locations) to be used for backfilling.

It should be noted that NYSDEC's subcontractor is continuing with their "off-site" work along Marbledale Road in the area of the quarry. However, there were no "off-site" work activities by NYSDEC's subcontractor on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-2 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Thursday February 16, 2017, neither water nor foam were required. There were no visible dusts released from the work activities for this event. An HDR representative was on site on Thursday, February 16,

Marbledale Road BCP Site Summary of CAMP Results (02/16/17) February 17, 2017

2017 to observe the topsoil removal and stockpiling activities, backfill soil removal and stockpiling activities, SA-2 excavation backfilling activities, and CAMP monitoring activities. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

It should be noted that the Dust monitor at Station #2 was operating in the morning for this monitoring event; however, it was not transmitting data to the mode until just before noon as shown on the graph. HES conducted hourly checks during the morning interval and the spot check dust concentrations were as follows:

- 0800 0.0110 mg/m³
- 0900 0.0210 mg/m³
- 1000 0.0340 mg/m³
- 1100 0.0100 mg/m³

Below is a summary table for the 02/16/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.00	0.00	0.00	0.09	0.28
Overall Ave.	0.00	0.00	0.00	0.06	0.21
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0000	0.0059	0.0000	0.0080	0.0161
Max. 15-min. Ave.	0.0095	0.0126	0.0329	0.0900	0.0241
Overall Ave.	0.0054	0.0085	0.0171	0.0122	0.0198

Date: 02/16/17

TG0A241967 February 16, 2017 06:39 to February 16, 2017 18:39 (GMT-5)

10:00 12:00 14:00 - Mass Conc. Total (Avg15) (mg/m²) - VOC (Avg15) (ppm)

Dashboard Monitor Alerts Map Files Notes Forum

From 2017-02-16 6:39 AM

enviroonet

Show

Graph Table

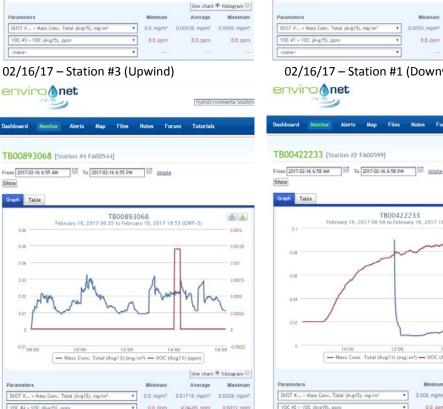
> 0.007 0.005

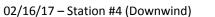
0.002

-0.0025 08:00

TG0A241967 [Station #3 FA02392]

enviroonet HydroEnvironmental -Alerts Dashboard Monitor Map Files Notes Forum Tutorials TB00864127 [Station #1 FA00609] From 2017-02-16 6:51 AM Show Graph Table TB00864127 February 16, 2017 06:51 to February 16, 2017 18:51 (GMT-5) 0.075 0.00 0 025 16:00-0.05 0.0088-00 10:00 12:00 14:00 - Mass Conc. Total (Avg15) (mg/m²) - VOC (Avg15) (ppm) line chart 🖲 histogram 💿 Average Maxim Parameters DUST #... > Mass Conc. Total (Avg15), mg 0.0059 mom* 162 m 0.0126 mg/m VOC #1 > VOC (Avg15), ppr 0.0, ppm 0.0, ppm 0.0, ppm .


Environet CAMP Data Summary Graphs


HydroEnviron

0.025

0.025

Tutorials

HydroEnvironmental Solution

Tutoria

Notes Forum

hdrinc.com

0.0, ppm

4.0e-05, ppm

0.0012, ppm

Marbledale Road BCP Site Summary of CAMP Results (02/16/17) February 17, 2017

02/16/17 - Station #5 (Morgan Street)

Memo

Date:	February 22, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 17, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Friday February 17, 2017 site work. The remediation contractor began excavation activities at the Source Area 3 (SA-3) location.

There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

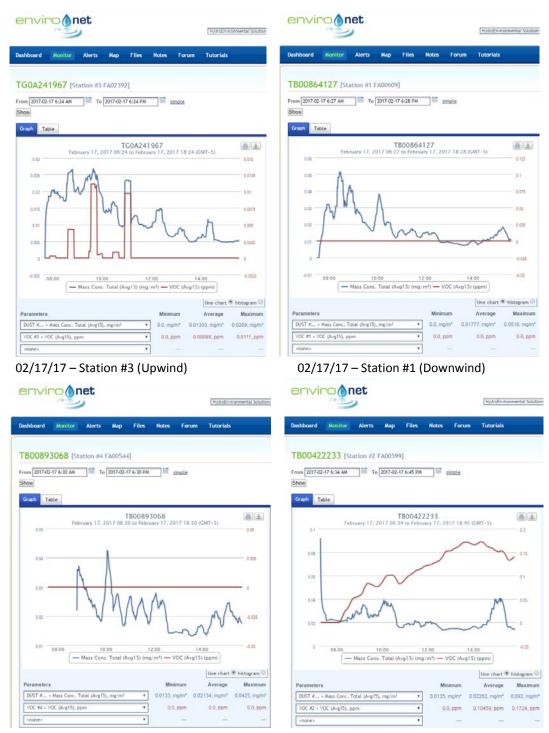
In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-3 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Friday February 17, 2017, neither water nor foam were required for odors or vapors emanating from the excavation area. However, during the excavation activities, a large number of buried small aerosol spray cans (labeled antiperspirant spray) were encountered on the north and part of the east sidewalls of the excavation area. As a precaution, excavation activities in this area were halted and the open excavation was sprayed with the vapor and odor suppressant foam and covered with plastic while the contractor determines an appropriate method of handling and disposal for the antiperspirant spray cans (source material).

Based on the age of the antiperspirant cans it is assumed that the cans likely contained chlorofluorocarbons (CFCs or the DuPont brand name Freon) since that was a common propellant for spray aerosols (including antiperspirants) prior to 1978 when the United States banned the use of CFCs as propellants in aerosol sprays. After discovering the antiperspirant cans in the SA-3 excavation, the contractor advanced a test pit about 5 feet east of the SA-3 excavation limits (nearest the building) and determined the discarded aerosol cans were not present in the test pit at the same depth they were uncovered in the SA-3 excavation area (~8 ft below grade).

There were no visible dusts released from the work activities during this monitoring event. A NYSDEC representative was on site on Friday, February 17, 2017 to observe the SA-3 excavation activities and monitoring activities in and around the work area. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.


Below is a summary table for the 02/17/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.01	0.00	0.00	0.17	0.28
Overall Ave.	0.00	0.00	0.00	0.10	0.20
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0000	0.0000	0.0133	0.0135	0.0089
Max. 15-min. Ave.	0.0269	0.0516	0.0425	0.0920	0.0241
Overall Ave.	0.0133	0.0178	0.0213	0.0226	0.0149

Date: 02/17/17

Page 3

Environet CAMP Data Summary Graphs

02/17/17 - Station #4 (Downwind)

02/17/17 - Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/17/17) February 22, 2017

enviroone	t				HydroEhi	ironmental Solutio
ashboard Monitor A	lerts Map	Files	Notes	Forum	n Tutorials)
FB00452777 [Statio	n #5 FA0060	01				
	То 2017-02-		in s	mple		
Graph Table Februar	y 17, 2017 06:5	FBOO45. 2 to Febru		17 18:53	2 (GMT-5)	0.025
"M	2	~		~		0.02
0.1	~	Why	M		٨	0.015
•			2	N	vh	~ 0.01
-0.1 08:00	10:00 C (Avg15) (ppm)	12:00		14:00 (Avg15	16:00) (mg/m ³)	0.005
					line chart	* histogram
Parameters			Mirsie	num	Average	Maximum
VOC #5 > VOC (Avg15), ppm		٧	0.0,	ppm	0.19909, ppm	0.2833.ppm
DUST # > Mass Conc. Total	(Avg15), mg/m ³		0.0089, m	g/m² 0	01486, mpim*	0.0241, mg/m
<none>.</none>						

02/17/17 – Station #5 (Morgan Street)

Memo

Date:	February 22, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 21, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Tuesday February 21, 2017 site work. The remediation contractor resumed the Source Area 3 (SA-3) excavation activities and investigation of the extent of aerosol spray cans (source material) that were encountered on 2/17/2017. The soil that was removed from SA-3 on this day was manually screened to remove source material from the soil (aerosol spray cans labeled antiperspirant spray, small plastic jars of "cosmetic cream", and a few small empty roll-on antiperspirant containers). It is possible that the jars of "cosmetic cream" are antiperspirant cream since the containers were found with the antiperspirant spray cans and roll-on antiperspirant containers; however, up to this point no labels have been found on the jars containing the cream to verify the type of cream it is. The screened soil was stockpiled on plastic for removal from the site. The source materials were segregated and placed in a 20-yard rolloff for future disposal. In addition, the contractor conducted general site preparation activities including cleaning up and consolidation of piles of vegetation debris in the northern section of the site that were generated during the site vegetation clearing activities conducted previously.

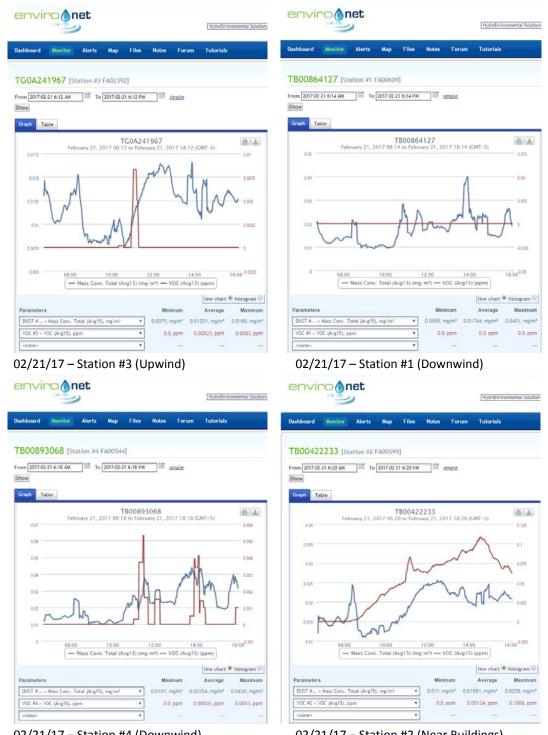
There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-3 area on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Tuesday February 21, 2017, neither water nor foam were required for odors or vapors emanating from the excavation area. There were no visible dusts released from the work activities for this event. A NYSDEC representative was on site on Tuesday, February 21, 2017 to observe the SA-3 excavation activities, other site work, and monitoring activities in and around the work areas. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.


Below is a summary table for the 02/21/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.01	0.00	0.01	0.11	0.24
Overall Ave.	0.00	0.00	0.00	0.05	0.16
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0075	0.0095	0.0101	0.0110	0.0081
Max. 15-min. Ave.	0.0166	0.0401	0.0438	0.0256	0.0279
Overall Ave.	0.0120	0.0174	0.0228	0.0188	0.0141

Date: 02/21/17

Page 3

Environet CAMP Data Summary Graphs

02/21/17 - Station #4 (Downwind)

02/21/17 - Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/21/17) February 22, 2017

02/21/17 - Station #5 (Morgan Street)

Memo

Date:	February 23, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 22, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Wednesday February 22, 2017 site work. The remediation contractor initiated excavation activities in Source Area 4 (SA-4). At a certain point when they excavated to about 5-6 feet they encountered what appeared to be some cosmetic products and garbage; at this point the contractor decided to halt excavation activities at SA-4 and moved north to Source Area 10 (SA-10) to excavate as they had trucks scheduled to haul soils off site for disposal. Stockpiled soils from the SA-3 excavation (segregated from the source materials) that were generated on February 21 were loaded onto trucks and hauled off for disposal along with soils from SA-4 and SA-10 on this day. The contractor conducted test pits within Source Area 6 (SA-6) and Source Area 9 (SA-9) to the target depths to determine if there were source materials in these locations that would require segregation activities. After verifying there were no source materials in these two areas, the test pits were backfilled. These two areas are scheduled for excavation on February 23.

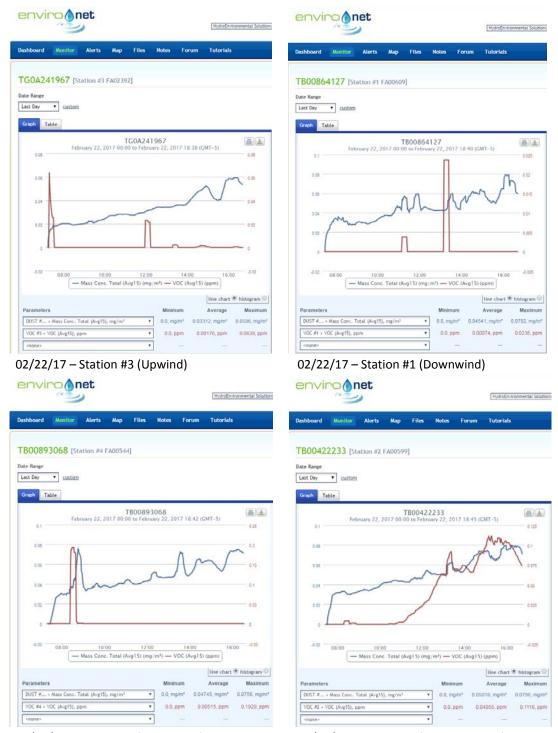
There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-3, SA-4, and SA-10 areas and the test pits conducted at SA-6 and SA-9 on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station offsite between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event. The four onsite monitoring stations were repositioned as needed based on the excavation areas where the contractor was working.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Wednesday February 22, 2017, neither water nor foam were required for odors or vapors emanating from the excavation areas or the test pit areas. There were no visible dusts released from the work activities during this monitoring event. A NYSDEC representative was on site on Wednesday, February 22, 2017 to observe the SA-3, SA-4, and SA-10 excavation activities, test pit activities, and monitoring activities in and around the work areas. The excavation areas were covered with plastic at the end of the day. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.


Below is a summary table for the 02/22/2017 CAMP monitoring event.

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.06	0.02	0.19	0.11	0.23
Overall Ave.	0.00	0.00	0.01	0.04	0.14
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0000	0.0000	0.0000	0.0000	0.0260
Max. 15-min. Ave.	0.0596	0.0792	0.0756	0.0796	0.0716
Overall Ave.	0.0331	0.0454	0.0475	0.0502	0.0447

Date: 02/22/17

Page 3

Environet CAMP Data Summary Graphs

02/22/17 – Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/22/17) February 23, 2017

envir	° On	et					HydroEnv	ironmental Solution
Dashboard	Monitor	Alerts	Мар	Files	Notes	For	um Tutorials	
TD00452								
TB00452	/// [Sta	ation #5 I	-A00600)]				
Date Range								
Last Day	<u>custom</u>							
Graph Tab	le							
			1	B0045	2777			81
0.25	Feb	ruary 22, 2	017 00:0	0 to Febr	uary 22, 201	7 18	47 (GMT-5)	0.08
				M				
0.2		hr	~~~~	mil	~		m	0.07
0.15	1	10			N	~		0.06
						Y	V	1
0.1	/				m	\checkmark	1	0.05
0.05	1		~				~	0.04
	1		~					
0 -	m	1V						0.03
-0.05								0.02
-0.00	08:00	10 VOC (Avg1		12:00		(Avg	16:00	0.02
			-/ (FE:/			0.09		e
Parameters					Minim		line chart Average	histogram
)C (Avg15), pp	om		•	0.0, 1		0.14066, ppm	0.2273, ppm
	Mass Conc. T		, mg/m ³		0.026, mg		0.04467, mg/m ²	0.0716, mg/m ^a
<none></none>				Ŧ			and the second second	

02/22/17 - Station #5 (Morgan Street)

Memo

Date:	February 26, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 23, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Thursday February 23, 2017 site work. The remediation contractor conducted excavation activities in Source Area 10 (SA-10) and Source Area 6 (SA-6). These two areas were excavated to their target depths; end point samples were collected and the excavation areas were backfilled. Excavation activities at Source Area 9 (SA-9) were also initiated. In addition, the contractor conducted additional excavation activities at the north side of the Source Area 3 (SA-3) excavation in an attempt to determine the extent of aerosol spray cans (source material) that were initially encountered in this area on 2/17/2017. A total of 21 trucks of soil were loaded and sent off site for disposal on this day. A NYSDEC representative was on site to observe site activities on this day. It was confirmed that the CAMP monitoring stations were appropriately re-positioned during the course of the day to account for the abovedescribed work and locations of intrusive work. When a given source area was completed or not being worked on, it was reported to have been covered and monitored periodically with the hand-held air monitoring instruments that are employed in and around the active work areas.

There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-10, SA-6, SA-9, and SA-3 areas on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event. The four onsite monitoring stations

were repositioned as needed based on the excavation areas where the contractor was working.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust, odors, or VOCs from site activities. On Thursday February 23, 2017, neither water nor foam were required. There were no visible dusts released from the work activities during this monitoring event with the exception of a short duration around 1345. Based on discussions with NYSDEC and HES, a skid steer rig was moving up and down the "road" running north and south along the center of the site. It appears that the "road" began to dry out, causing visible dust to be released into the air in the vicinity of the skid steer rig as it moved along. HES and NYSDEC observed the visible dust and the skid steer rig operator was instructed to stop operating the rig. According to the NYSDEC inspector and HES, the visible dust subsided quickly after the skid steer rig stopped operating. During this interval the downwind CAMP stations at the perimeter of the work area did not measure dust concentrations requiring corrective measures.

A NYSDEC representative was on site on Thursday, February 23, 2017 to observe the SA-10, SA-6, SA-9, and SA-3 excavation activities, and monitoring activities in and around the work areas. The excavation areas were covered with plastic at the end of the day. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

It was noted that all of the CAMP dust monitors were showing elevated dust readings during the morning interval (including the upwind station [Sta. #3] and the off site station [Sta. #5]) compared with the data from previous recent monitoring events. The graphs of the 15-minute average dust concentrations show all of the stations were registering increasing concentrations during the morning interval, with decreasing levels especially around 1100. Dust monitors often over-read dust concentrations (morning fog) were causing all of the Dust monitors at the site to read elevated concentrations of dust; when the moisture lifted and the ground began to dry the readings at all of the stations decreased at about the same time. The two downwind stations (Sta. #1 and Sta. #4) and the "near building" station (Sta. #2) were not reading greater than 100 μ g/m³ above the upwind station at any time during this monitoring event. The highest 15-minute average concentrations (Sta. #3) was reading 86 μ g/m³. The other three stations were reading similar concentrations during this same interval.

Date: 02/23/17								
CAMP Data	Upwind (Sta. 3)	Downwind (Sta. 1)	Downwind (Sta. 4)	Buildings (Sta. 2)	Morgan Str. (Sta. 5)			
VOCs (ppm)								
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00			
Max. 15-min. Ave.	0.02	0.02	0.00	0.15	0.24			
Overall Ave.	0.00	0.00	0.00	0.06	0.12			
Dust (mg/m ³)								
Min. 15-min. Ave.	0.0375	0.0442	0.0000	0.0531	0.0442			
Max. 15-min. Ave.	0.0959	0.1163	0.1546	0.1260	0.1174			
Overall Ave.	0.0620	0.0742	0.0830	0.0825	0.0706			

Below is a summary table for the 02/23/2017 CAMP monitoring event.

Page 4

Environet CAMP Data Summary Graphs

02/23/17 - Station #4 (Downwind)

02/23/17 - Station #2 (Near Buildings)

Marbledale Road BCP Site Summary of CAMP Results (02/23/17) February 26, 2017

envii) 					HydroEnv	ironmental Solut
ashboard	Monitor	Alerts	Мар	Files	Notes	Forum	n Tutorials	
		0.000	-12-11-07-5					
	2777 [Sta	ation #5	FA00600	1				
ate Range	-							
Last Day	• custom							
Graph Ta	able							
				B0045				
0.25	Feb	ruary 23, 2	017 00:0	0 to Febr	ary 23, 20	17.18:0	6 (GMT-5)	0.15
	1	n	3					
0.2 -	m		2					0.54
0.15			~					0.12
			1				~	
0.1 -		A	1	1		1	51	0.1
0.05		1	•		2	/		0.08
	12				m	1)	
0	9			11		-	m	0.06
-0.05				V				18.000.04
	08 00	VOC (Avg1		12:00 	14.0 Conc. Tota		16:00 (mg/m*)	18,00
							line chart	🖲 histogram (
Parameter					Mini	mum	Average	Maximu
10000000000	/OC (Avg15), pj	pm		•		ppm	0.12371, ppm	0.2371, pp
	Mass Conc. T	otal (Aurt5	ma (m)		0.0442, m	om* (0.07062, mg/m*	0.1174, mp/m
and an other	Mass conc. 1	near houghs	11 million and		Bridden and an	West 1		W. Litter Litter

02/23/17 – Station #5 (Morgan Street)

Memo

Date:	February 27, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 24, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Friday February 24, 2017 site work. The remediation contractor conducted excavation activities in Source Area 8 (SA-8) and Source Area 9 (SA-9). The SA-8 area was excavated to the target depths; end point samples were collected and the excavation area was backfilled. Excavation activities at Source Area 9 (SA-9) were not completed; the excavation area was covered and fenced at the end of the day. The contractor conducted a test pit within Source Area 1 (SA-1) to the target depth to determine if there were source materials in this location that would potentially require segregation activities of source materials. After verifying there were no source materials in the test pit, it was backfilled and covered with plastic sheeting.

In addition, the contractor conducted excavation activities at the north side of Source Area 3 (SA-3) excavation. It was determined that the extent of aerosol spray cans (source material) at the north end of the excavation ended approximately 6 ft from the fence around the adjacent parking lot. This end wall was scraped down and the floor area at this end was excavated down to the target depth; a total of 5 end wall samples were collected along the north side and the east and west walls. The area along the north wall was then backfilled to prevent possible damage to the adjacent parking lot area to the north. The SA-3 excavation area was covered and fenced at the end of the day. A total of 12 trucks of soil were loaded and sent off site for disposal on Feb 24, 2017.

An HDR representative was on site to observe site activities on this day. It was confirmed that the CAMP monitoring stations were appropriately re-positioned during the course of the day to account for the above-described work and locations of intrusive work. When a given source area was completed or not being worked on, it was covered and monitored periodically with the hand-held air monitoring instruments that are employed in and around the active work areas.

There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. HES conducted CAMP monitoring during soil excavation and truck loading activities associated with the SA-8, SA-9, and SA-3 areas and the test pit conducted at SA-1 on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) are to be set up on-site to collect particulate (Dust) and volatile organic compound (VOC) measurements. In addition, HES has a 5th CAMP monitoring station off-site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event. The four onsite monitoring stations were repositioned as needed based on the excavation areas where the contractor was working.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Friday February 24, 2017, neither water nor foam were required for odors or vapors emanating from the excavation areas. There were no noticeable visible dusts released from the work activities during this monitoring event.

An HDR representative was on site on Friday, February 24, 2017 to observe the SA-8, SA-9, and SA-3 excavation activities, test pit activities, and monitoring activities in and around the work areas. The excavation areas were covered with plastic at the end of the day. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the five operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

It was noted that the upwind CAMP station registered an elevated dust concentration for a minute at 2:13 pm that caused a 15-min average of 0.4916 mg/m³. At the time of the elevated reading, Station #3 was positioned south of the SA-3 area where the contractor was excavating along the north wall of the excavation. There was no apparent reason for this elevated reading as there was no visible dust noted during this interval. It appears this was a very short duration event or possibly a meter malfunction because the concentrations immediately before and after this elevated reading were back down to typical dust concentrations that were observed on this day and during prior site work. See the table below showing the 1-minute concentrations around the time of the registered elevated concentration.

TG0A241967: Station #3 (Upwind Location)									
1-Minute Reading 15-Minute Average									
Date / Time	(mg/m³)	(mg/m³)							
2/24/2017 14:09	0.02	0.02							
2/24/2017 14:10	0.02	0.02							
2/24/2017 14:11	0.009	0.0193							
2/24/2017 14:12	0.005	0.0183							
2/24/2017 14:13	7.12	0.4916							
2/24/2017 14:14	0.012	0.4911							
2/24/2017 14:15	0.005	0.4901							
2/24/2017 14:16	0.042	0.4915							
2/24/2017 14:17	0.007	0.4907							
2/24/2017 14:18	0.005	0.4897							

It should be noted that the PID at the off-site station (Sta. #5) did not transmit data to the Environet site on this day.

HES was unable to get the FID to operate properly on this day for "at-hole" monitoring; the flame would not engage and stay lit. HES discussed the meter issues with the rental company and they are looking to exchange this unit with another one if HES meter troubleshooting is not successful to get the meter to become operational.

Currently there are three full 20-yd roll-offs containing the source materials from the SA-3 excavation (antiperspirant spray cans and jars of antiperspirant cream). The roll-offs are covered with vinyl covers secured in place with elastic tie-down cords; the contractor is waiting for direction and approval from their disposal facilities for the proper disposal of this source material. Source material from SA-3 that was not able to be placed in the roll-offs was placed on plastic sheeting inside the SA-3 excavation and covered with plastic. There were no PID readings around the site, including the covered roll-off containers or the SA-3 excavation area containing the source materials, at the end of the day.

NYSDEC received an odor complaint on Thursday February 23rd from a location on Verdi Avenue adjacent to the northwest corner of the site. This afternoon, the NYSDEC project manager requested that HDR visit the property (with the owner's permission) and take PID readings and also make odor observations. HDR went up to the property at approximately 3:00 pm with HES' mobile PID; there were no PID readings above 0.0 ppm at the back of the property adjacent to the northern end of the site and there were no noticeable odors present.

Date: 02/24/17								
CAMP Data	Upwind (Sta. 3)	Downwind (Sta. 1)	Downwind (Sta. 4)	Buildings (Sta. 2)	Morgan Str. (Sta. 5)			
VOCs (ppm)								
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	*			
Max. 15-min. Ave.	0.02	0.04	0.01	0.30	*			
Overall Ave.	0.00	0.00	0.00	0.11	*			
Dust (mg/m ³)								
Min. 15-min. Ave.	0.0000	0.0000	0.0000	0.0000	0.0045			
Max. 15-min. Ave.	0.4916	0.0646	0.0525	0.0890	0.0354			
Overall Ave.	0.0251	0.0254	0.0293	0.0320	0.0145			

Below is a summary table for the 02/24/2017 CAMP monitoring event.

Note: * The Station #5 PID was not transmitting VOC data to the Environet site for this CAMP monitoring event. HES noted the PID reading was 0.1 ppm at this station when it was shut down at the end of the day.

Alerts Map Files Notes

enviroonet

Dashboard

Monitor

1

enviroonet HydroEnvironmental Solution 1 Dashboard Monitor Alerts Map Files Notes Forum Tutorials Graph Table T800864127 February 24, 2017 00 0.05 0.00 0.04 12:00 14:00 16:0 - Mass Conc. Total (Avg15) (mg/m³) - VOC (Avg15) (ppm) line chart * h Para Missie Averag Maxim 0.0646. mg/m DUST #... > Mass Conc. Total (Avg15), mg/m 0.0, mg/m* 0.02538, mg/m* VOC #1 = VOC (Arg15), ppm 0.0, ppm 0.00124, ppm 0.0444, ppm .

Forum

HydroEnvironmental Solution

Tutorials

Page 5

0.4

ogram 🕗

Marbledale Road BCP Site Summary of CAMP Results (02/24/17) February 27, 2017

envii		net /					HydroEn	vironmental Soluti
Dashboard	Monitor	Alerts	Мар	Files	Notes	Foru	ım Tutoriak	
TB0045	2777 [St	ation #5	FA0060	0]				
Date Range								
Last Day	▼ <u>custom</u>							
Graph T	ible							
	L.b.			FB0045		17.10	11 (GMT-5)	員上
	Teb	ruary 24, 2	017 00:0	IO to repri	Jary 24, 20	117 19:	(GM1=5)	0.04
		M						
	n		Λ					0.00
1	V		λ					0.02
		U	(1				
				5	1			0.01
					Sm	-	m	
	08:00	10:0	0	12:00	14:01)	16:00	18:00
	(-	VOC (Avg1	5) (ppm)	- Mass	Conc. Tota	l (Avg1	5) (mg/m²)	
							line chart	🖲 histogram (
Parameters					Mic	imum	Average	Maximu
VOC #5 > \	OC (Avg15), p	pm			<no< td=""><td>data></td><td><no data=""></no></td><td><no data<="" td=""></no></td></no<>	data>	<no data=""></no>	<no data<="" td=""></no>
DUST #	Mass Conc. T	otal (Avg15)), mg/m ¹	Υ.	0.0045,	mg/m*	0.0145, mg/m*	0.0354, mg/r

02/24/17 – Station #5 (Morgan Street)

Memo

Date:	March 01, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 27, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Monday February 27, 2017 site work. On this day HES deployed two sets of CAMP stations so that they would be able to effectively monitor work being conducted by the contractor at the north area of the site and south area of the site simultaneously.

The remediation contractor conducted excavation activities in the northern portion of the site including Source Area 9 (SA-9) and Source Area 7 (SA-7). The SA-9 area was excavated to the target depth; end point samples were collected and the excavation area was backfilled. Excavation activities at Source Area 9 (SA-7) were not completed; the excavation area was covered and fenced at the end of the day.

In the southern portion of the site, the contractor conducted a test pit within Source Area 1 (SA-1) to the target depth to determine if there were source materials in this location that would potentially require segregation activities of source materials. After verifying there were no source materials in the test pit, it was backfilled and covered with plastic sheeting. In addition, the contractor conducted excavation activities at Source Area 3 (SA-3) excavation. The SA-3 area was excavated to the target depth, the remaining end point samples were collected, and the excavation area was backfilled. A total of 15 trucks of soil were loaded and sent off site for disposal on February 27, 2017.

An NYSDEC representative was on site to observe site activities on this day. It was confirmed that the CAMP monitoring stations were appropriately re-positioned as needed during the course of the day to account for the above-described work and locations of intrusive work. When a given source area was completed or not being worked on, it was covered and monitored periodically with the hand-held air monitoring instruments that are employed in and around the active work areas.

There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. As noted previously, the contractor was planning to conduct excavation and/or backfilling activities at two areas of the site simultaneously on this day; therefore, HES deployed an additional four CAMP stations to effectively monitor the work activities occurring at different portions of the site on this day. HES conducted CAMP monitoring during soil excavation, truck loading, and backfilling activities associated with the SA-9 and SA-8 areas at the northern area of the site with one set of CAMP stations and they conducted CAMP monitoring during soil excavation, truck loading, and backfilling activities associated with the SA-3 area and a test pit conducted in SA-1 in the southern portion of the site on this day. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) were set up around areas of the site where soil disturbance activities were conducted to collect particulate (Dust) and volatile organic compound (VOC) measurements. A total of eight CAMP stations were deployed at the site on this day. In addition, HES has an off-site CAMP monitoring station west of the site between the site and the Waverly Early Childhood Center. The CAMP station was situated on Morgan Street, near the intersection of Bellew Ave. for this monitoring event. The eight onsite monitoring stations were repositioned as needed based on the excavation areas where the contractor was working.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Monday February 27, 2017, neither water nor foam were required for odors or vapors emanating from the excavation areas. There were no noticeable visible dusts released from the work activities during this monitoring event.

A NYSDEC representative was on site on Monday, February 27, 2017 to observe the excavation activities, test pit activities, backfilling activities, and monitoring activities in and around the work areas. The excavation areas were covered with plastic at the end of the day. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the nine operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

It should be noted that the PID at one of the downwind stations in the southern area (Sta. #4) did not transmit data to the Environet site until approximately 1100 (transfer cable was not hooked up). HES collected hourly readings at this station as follows:

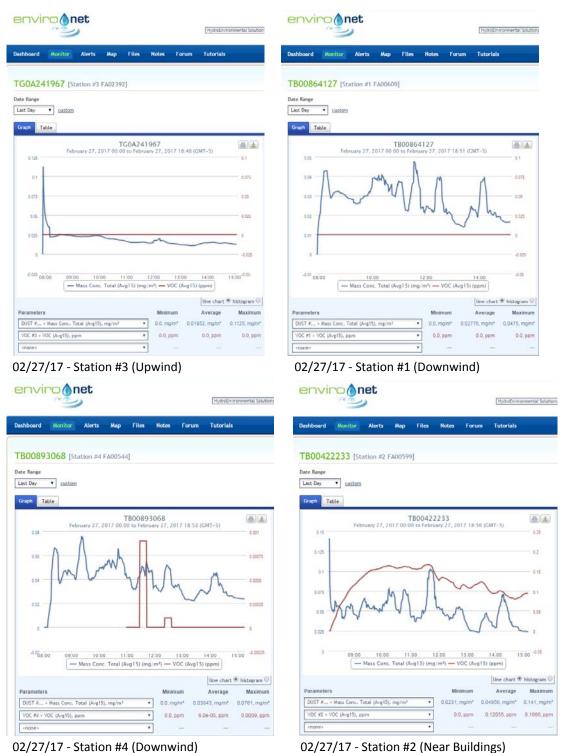
- 0830; 0.0 ppm
- 0930; 0.0 ppm
- 1030; 0.0 ppm

HES was unable to get the FID to operate properly on this day for "at-hole" monitoring; the flame would not engage and stay lit. HES discussed the meter issues with the rental company and they are scheduled to exchange the malfunctioning unit with another one.

Currently there are three full 20-yd roll-offs and one partially filled roll-off containing the source materials from the SA-3 excavation (antiperspirant spray cans and jars of antiperspirant cream). The roll-offs are covered with vinyl covers secured in place with elastic tie-down cords; the contractor is waiting for direction and approval from their disposal facilities for the proper disposal of this source material. There were no PID readings around the site, including the covered roll-off containers containing the source materials, at the end of the day.

Date: 02/27/17							
	Upwind	Downwind	Downwind	Buildings	Morgan Str.		
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)		
VOCs (ppm)							
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00		
Max. 15-min. Ave.	0.00	0.00	0.00	0.30	0.26		
Overall Ave.	0.00	0.00	0.00	0.11	0.16		
Dust (mg/m ³)							
Min. 15-min. Ave.	0.0000	0.0000	0.0000	0.0000	0.0154		
Max. 15-min. Ave.	0.1125	0.0475	0.0761	0.0890	0.0610		
Overall Ave.	0.0185	0.0278	0.0394	0.0320	0.0242		

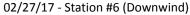
Below is a summary table for the 02/27/2017 CAMP monitoring event.


Note: * The Station #4 PID was not transmitting VOC data to the Environet site until approximately 1100 for this CAMP monitoring event.

Date. 02/27/17					
CAMP Data	Upwind	Downwind	Downwind	Buildings	
	(Sta. 7)	(Sta. 6)	(Sta. 9)	(Sta. 8)	
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	
Max. 15-min. Ave.	0.24	0.25	0.05	0.29	
Overall Ave.	0.06	0.05	0.02	0.05	
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0197	0.0000	0.0075	0.0231	
Max. 15-min. Ave.	0.0514	0.1013	0.0635	0.0640	
Overall Ave.	0.0295	0.0392	0.0299	0.0377	

Date: 02/27/17

Page 5


Environet CAMP Data Summary Graphs

Marbledale Road BCP Site Summary of CAMP Results (02/27/17) March 01, 2017

02/27/17 - Station #9 (Downwind)

Page 6

Marbledale Road BCP Site Summary of CAMP Results (02/27/17) March 01, 2017

envir		het					HydroEnvir	onmental Soluti
ashboard	Monitor	Alerts	Мар	Files	Notes	Forur	n Tutorials	
B0045	2 777 [St	ation #5	EA0060	1				
ate Range	L/// [30	acturt #J	PALAJOAA	4				
Last Day	• custom							
Graph Ta	ble							
	DIE					_		Common and the
	Feb	ruary 27, 2		B0045.		17 19.1	8 (GMT-5)	
0.5 -								0.00
0.25		N	~					0.07
0.2	- /		1	1				0.06
0.15	1				1			0.65
	/						~	
0,1	/							0.04
0.05	for	~	~					0.03
0 -	/			5	m	15	n	0.02
0.05						~	-	0.01
	08:00	VOC (Avg1	5) (ppm)	- Mass		14:00		10
								🖗 histogram (
Parameters					Mir	imum	Average	Maximu
VOC #5 > V	OC (Avg15), p	pm		۲	0.0), ppm	0.16591, ppm	0.2591, pp
DUST #	Mass Conc. T	otal (Avg15), mg/m ³	٠	0.0154,	mg/m*	0.02418, mg/m²	0.061, mg/m

02/27/17 - Station #5 (Morgan Street)

Memo

Date:	March 01, 2017
Project:	BCP Site # C360143
To:	Village of Tuckahoe
From:	John Guzewich, HDR
Subject:	Summary of CAMP Results During Site Work 109-125 Marbledale Road Tuckahoe, New York February 28, 2017

This memorandum was prepared by HDR to provide a review of the Community Air Monitoring Plan (CAMP) implementation during Tuesday February 28, 2017 site work. On this day HES deployed two sets of CAMP stations so that they would be able to effectively monitor work being conducted by the contractor at the north area of the site and south area of the site simultaneously.

The remediation contractor conducted excavation activities in the northern portion of the site at Source Area 7 (SA-7). The SA-7 area was excavated to the target depth; end point samples were collected and the excavation area was backfilled.

In the southern portion of the site, the contractor began excavation activities in Source Area 1 (SA-1). Based on discussions between NYSDEC and NYSDOH, HES and the contactor, excavation activities in this area were not conducted within 20 feet of the property fence line. NYSDEC and NYSDOH have requested additional measures be taken when there are excavation activities that are within 20 feet of the property fence where the public has access (along Marbledale Road). Excavation activities at SA-1 were not completed; the excavation area was covered and fenced at the end of the day. A total of 15 trucks of soil were loaded and sent off site for disposal on February 28, 2017.

An NYSDEC representative was on site to observe site activities on this day. It was confirmed that the CAMP monitoring stations were appropriately re-positioned as needed during the course of the day to account for the above-described work and locations of intrusive work. When a given source area was completed or not being worked on, it was covered and monitored periodically with the hand-held air monitoring instruments that are employed in and around the active work areas.

There were no NYSDEC "off-site" work activities on this day.

DATA EVALUATION AND INTERPRETATIONS

In accordance with the RAWP, a CAMP is required during site activities involving soil disturbance activities. As noted previously, the contractor was planning to conduct excavation and/or backfilling activities at two areas of the site simultaneously on this day; therefore, HES deployed an additional four CAMP stations to effectively monitor the work activities occurring at different portions of the site on this day. HES conducted CAMP monitoring during soil excavation, truck loading, and backfilling activities associated with SA-7 at the northern area of the site with one set of CAMP stations and they conducted CAMP monitoring during soil excavation, and truck loading activities associated with the SA-1 area in the southern portion of the site on this day with another set of CAMP stations. In accordance with the RAWP, four monitoring stations (upwind, two downwind, and a location between the work area and the nearest occupied building) were set up around areas of the site where soil disturbance activities were conducted to collect particulate (Dust) and volatile organic compound (VOC) measurements. A total of eight CAMP stations were deployed at the site on this day. In addition, HES has an off-site CAMP monitoring station west of the site between the site and the Waverly Early Childhood Center. Since the contractor was working in the southern portion of the site at SA-1 that is near the property fence, the off-site CAMP station was positioned near the end of Hall Avenue, near the intersection with Morgan Street for this monitoring event. The eight onsite monitoring stations were repositioned as needed based on the excavation areas where the contractor was working.

Details of the CAMP monitoring procedures and the monitoring equipment used to conduct the CAMP are included in previous data summary memoranda.

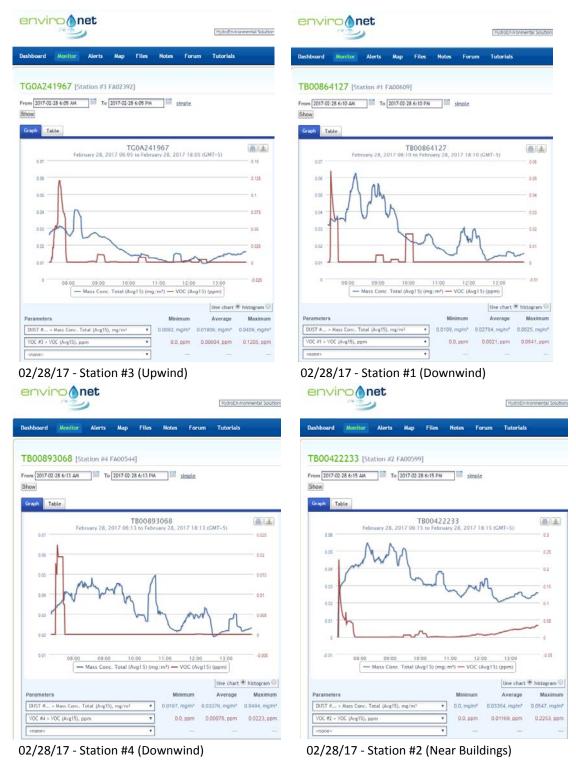
Water and vapor/odor suppressant foam are available on-site in the event there is a release of dust or VOCs from site activities. On Tuesday February 28, 2017, neither water nor foam were required for odors or vapors emanating from the excavation areas. There were no noticeable visible dusts released from the work activities during this monitoring event.

A NYSDEC representative was on site on Tuesday, February 28, 2017 to observe the excavation activities, backfilling activities, and monitoring activities in and around the work areas. The excavation areas were covered with plastic at the end of the day. During this monitoring event there were no exceedances of the CAMP alert triggers at any of the nine operating CAMP stations during site activities. None of the dust or VOC concentrations approached the action levels requiring a work stoppage or corrective measures.

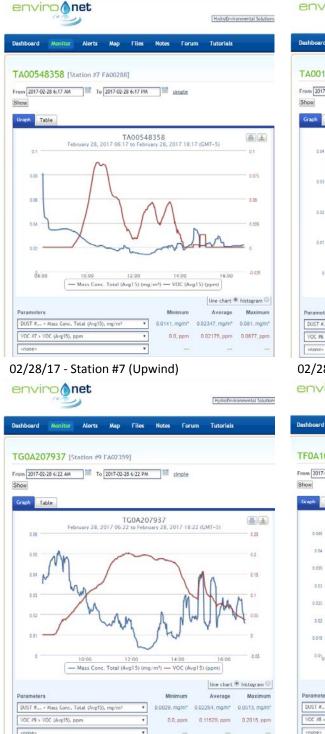
The FID was not used during this monitoring event; HES incorrectly thought the FID was not required for monitoring since the contractor was not working in areas where elevated concentrations of Freon were detected in the soil gas samples during previous investigations. The FID will be used for all subsequent excavation activities involving SAs for at-hole monitoring.

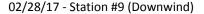
Currently there are three full 20-yd roll-offs and one partially filled roll-off containing the source materials from the SA-3 excavation (antiperspirant spray cans and jars of antiperspirant cream). The roll-offs are covered with vinyl covers secured in place with elastic tie-down cords; the contractor is waiting for direction and approval from their disposal facilities for the proper disposal of this source material. There were no PID readings around the site, including the covered roll-off containers containing the source materials, at the end of the day.

Date:	02/28/17
-------	----------

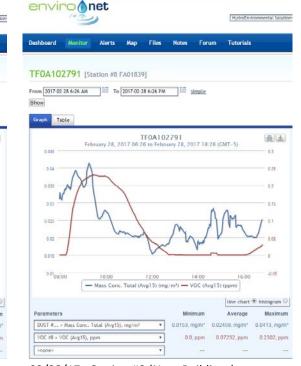

	Upwind	Downwind	Downwind	Buildings	Morgan Str.
CAMP Data	(Sta. 3)	(Sta. 1)	(Sta. 4)	(Sta. 2)	(Sta. 5)
VOCs (ppm)					
Min. 15-min. Ave.	0.00	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.12	0.05	0.02	0.22	0.24
Overall Ave.	0.01	0.00	0.00	0.01	0.13
Dust (mg/m ³)					
Min. 15-min. Ave.	0.0092	0.0109	0.0187	0.0000	0.0000
Max. 15-min. Ave.	0.0409	0.0625	0.0494	0.0547	0.0420
Overall Ave.	0.0181	0.0278	0.0328	0.0335	0.0189

Date: 02/28/17


CAMP Data	Upwind (Sta. 7)	Downwind (Sta. 6)	Downwind (Sta. 9)	Buildings (Sta. 8)
VOCs (ppm)				
Min. 15-min. Ave.	0.00	0.00	0.00	0.00
Max. 15-min. Ave.	0.09	0.00	0.20	0.23
Overall Ave.	0.02	0.00	0.11	0.07
Dust (mg/m ³)				
Min. 15-min. Ave.	0.0141	0.0095	0.0029	0.0153
Max. 15-min. Ave.	0.0810	0.0373	0.0513	0.0413
Overall Ave.	0.0235	0.0195	0.0226	0.0246


Page 5

Environet CAMP Data Summary Graphs



Marbledale Road BCP Site Summary of CAMP Results (02/28/17) March 01, 2017

enviro HydroEnvfronmental Solution Dashboard Map Files Notes Forum Tutorials TA00134405 [Station #6 FA00211] From 2017-02-28 6:20 AM Graph Table TA00134405 February 28, 2017 06:20 to February 28 墨土 28, 2017 18:20 (GMT-5) 0.05 -0.05 10.00 12:00 14:00 16:00 - Mass Cone. Total (Avg15) (mg/m¹) - VOC (Avg15) (ppm) line chart ® histogram 🔘 Minimum Average Maximum DUST #... > Mass Conc. Total (Avg15), mg/m . 0.0095, maim^a 0.01954, maim^a 0.0373, maim^a VOC #6 > VOC (Avg15), ppm 0.0, ppm 0.0, opm 0.0, ppm . 02/28/17 - Station #6 (Downwind)

^{02/28/17 -} Station #8 (Near Buildings)

Page 6

Marbledale Road BCP Site Summary of CAMP Results (02/28/17) March 01, 2017

enviro HydroEnvironmental Solutions 2 Dashboard Monitor Alerts Map Files Notes Forum Tutorials TB00452777 [Station #5 FA00600] From 2017-02-28 6:29 AM 🔲 To 2017-02-28 6:29 PM 🗎 simple Show Graph Table TB00452777 February 28, 2017 06:29 to February 28, 2017 18:29 (GMT-5) **ł** 0.3 0.06 0.25 0.05 0.2 0.04 0.15 0.03 0.1 0.02 0.05 -0.05 -0.01 08:00 16:00 line chart 🖲 histogram 🔘 Parameters Minimum Average Maximum 0.0. ppm 0.13297, ppm 0.2395, ppm VOC #5 > VOC (Avg15), ppm DUST #... > Mass Conc. Total (Avg15), mg/m 0.0, mg/m³ 0.01893, mg/m³ 0.042, mg/m³ ۳

02/28/17 - Station #5 (Morgan Street)